Mammal Species of the World Logo



SUBFAMILY Arvicolinae

Author:Gray, 1821.
Citation:Lond. Med. Repos., 15: 303.

See Kretzoi (1955, 1962, 1969) for family-group priority of Arvicolidae Gray, 1821, instead of Microti Miller, 1896. Although some have intentionally maintained the latter name (e.g., Repenning, 1992, 1998), a group concept of arvicoline rodents, recognized as Arvicolinae, actually had emerged long prior to Miller’s (1896) seminal monograph (e.g., Baird, 1857; Coues, 1874; Murray, 1866; Alston, 1876; Lataste, 1887). Carleton and Musser (1984) generally defined and reviewed the limits and contents of the subfamily. Hinton’s (1926a) classic monograph, although never completed, still remains the most authoritative systematic, morphological, and biogeographic review for many genera. Synthetic taxonomic treatments are available for broad regions, including the Palearctic (Agadzhanyan and Yatsenko, 1984; Corbet, 1978c, 1984; Ellerman and Morrison-Scott, 1951), Eurasia (Gromov and Erbajeva, 1995; Gromov and Polyakov, 1977; Ognev, 1963, 1964; Pavlinov and Rossolimo, 1987; Pavlinov et al., 1995a), Europe (Mitchell-Jones et al., 1999; Niethammer and Krapp, 1982a), and North America (Hall, 1981; Hall and Cockrum, 1953; Wilson and Ruff, 1999). Biochronology, paleogeography, and paleoecology of the arvicoline radiation comprehensively reviewed by Repenning (1990), Repenning et al. (1990, 1998), Fejfar and Repenning (1992), Montuire et al. (1997), and Chaline et al. (1999, and references therein). Dating of the early arvicoline phylogenesis, about 5-6 million years ago, is in reasonable agreement whether based on paleontological or molecular-clock perspectives (Chaline et al., 1999; Conroy and Cook, 1999).

The earliest indisputable arvicolines are represented by early Pliocene fossils in Holarctic North America, Europe and NW Asia (the primitive Prosomys; Chaline et al., 1999; Fejfar, 1990a; Repenning, 1998, 2003, as Promimomys). Southern Asia was not populated by voles until the late Pliocene, presumably derived from immigration of a European Mimomys stock (Kotlia, 1994; Kotlia and Koenigswald, 1992); early Pliocene dispersion of Mimomys to North America, via Beringia, important to the diversification of New World arvicolines (Repenning, 2003). Several independent lineages of cricetids with rooted, slightly hypsodont molars appeared in the late Miocene of Europe, Asia, and North America and survived into the Pleistocene in Europe; these "microtoid cricetids," such as Baranomys and Microtoscoptes, are believed to precede the appearance of true voles and were replaced by them (see review by Fejfar, 1999a). Although some have treated certain of these genera as Arvicolinae (e. g., Gromov and Polyakov, 1977; Kretzoi, 1969; Repenning, 1998; Repenning et al., 1990; Zheng and Li, 1990), most have recognized them as dentally progressive cricetids that exploited a graminivorous niche (see review by Chaline et al., 1999). Arvicolines are convincingly derived from a cricetid ancestral stock (Gromov and Polyakov, 1977; Kretzoi, 1955; Michaux et al., 2001b), yet whether their phylogenetic roots are embedded in the microtoid cricetids or another cricetid lineage is unknown. Chaline et al. (1999:242) summarized the uncertainty of the paleontological evidence: "there is a wide array of cricetids with arvicoline features but it is currently impossible to specify their involvement in the origin of arvicolines."

Broad, multispecies surveys have been undertaken on morphological and biochemical systems of arvicolines that bear on issues of their phenetic divergence and phylogenetic relationships. E.g., comparative and functional studies of the dentition (Abramson, 1993; Brunet-Lecomte and Chaline, 1992; Bustos, 2002; Contoli, 1993; Hinton, 1926a; Koenigswald, 1980, 1982; Miller, 1896); of the cranium (Courant et al., 1997; Gromov, 1990; Kratochvíl, 1982; Pietsch, 1980); of middle ear anatomy (Hooper, 1968; Pavlinov, 1984a); of cutaneous and subcutaneous glands (Quay, 1954, 1968; Sokolov and Dzhemukhadze, 1991); of the arterial system (Durán et al., 1998); of myology (Kesner, 1980, 1986; Repenning, 1968; Stein, 1986, 1987); of the digestive tract (Carleton, 1981; Quay, 1954; Vorontsov, 1979); of reproductive structures (Anderson, 1960; Hooper and Hart, 1962; Niethammer, 1972). Chromosomal comparisons, both standard and banded karyotypes, are prevalent in recent systematic studies (Ashley and Fredga, 1994; Burgos et al., 1989; Modi, 1987; Radosavlievic et al., 1990; Zagorodnyuk, 1990, 1991c; Zima and Kral, 1984a); especially see Zagorodnyuk (1992c), who tabulated chromosomal traits of 63 species of Arvicolini and discussed their taxonomic and geographic patterns. Molecular studies have broadly addressed phylogenetic questions, including allozyme variation (Chaline and Graf, 1988; Gill et al., 1987; Graf, 1982; Mezhzherin et al., 1993, 1995; Moore and Janecek, 1990), albumin evolution (Nikoletopoulos et al., 1992), and DNA, whether hybridization comparisons (Catzeflis, 1990; Catzeflis et al., 1987; Din et al., 1993), interspersed repetitive elements (Modi, 1996; Vanlerberghe et al., 1993), or mitochondrial and nuclear gene sequences (Conroy and Cook, 1999; Martin et al., 2000; Michaux and Catzeflis, 2000; Michaux et al., 2001b). Although morphological data has historically formed the foundation for defining Arvicolinae, this body of molecular data robustly supports the subfamily’s monophyly.

Notwithstanding the proliferation of family-group names, practically a one-to-one correspondence with recognized genera, suprageneric relationships remain somewhat ambiguous—e.g., compare the tribal contents of Ognev (1963), Hooper and Hart (1962), Kretzoi (1969), Gromov and Polyakov (1977), and Repenning (1992). The instability of tribal limits is mirrored in the irresolvable polytomies disclosed in phylogenetic evaluation of mitochondrial DNA sequences, suggesting rapid taxonomic diversification over a short time period (Conroy and Cook, 1999). In general, we follow McKenna and Bell (1997) for tribal affiliations (Table 1) and provide explanations for departures from their taxonomic scheme. We observe Ketzoi’s (1969) Myodini, type genus Myodes, for most arvicolines with rooted molars and simple molar patterns. In the following generic and specific remarks, therefore, readers should understand that wherever we use Myodes or Myodini the cited publications generally refer to Clethrionomys (or Evotomys) and Clethrionomyini.



GENUS Alticola


SPECIES albicaudus

SPECIES argentatus

SPECIES barakshin

SPECIES montosa

SPECIES roylei

SPECIES semicanus

SPECIES stoliczkanus

SPECIES tuvinicus

SUBGENUS Aschizomys

SPECIES lemminus

SPECIES macrotis

SPECIES olchonensis

SUBGENUS Platycranius

SPECIES strelzowi

GENUS Arborimus

SPECIES albipes

SPECIES longicaudus


GENUS Arvicola

SPECIES amphibius

SPECIES sapidus

SPECIES scherman

GENUS Blanfordimys

SPECIES afghanus

SPECIES bucharensis

GENUS Caryomys



GENUS Chionomys


SPECIES nivalis

SPECIES roberti

GENUS Dicrostonyx

SPECIES groenlandicus

SPECIES hudsonius

SPECIES nelsoni

SPECIES nunatakensis

SPECIES richardsoni

SPECIES torquatus

SPECIES unalascensis

SPECIES vinogradovi

GENUS Dinaromys

SPECIES bogdanovi

GENUS Ellobius


SPECIES alaicus

SPECIES talpinus

SPECIES tancrei

SUBGENUS Afganomys

SPECIES fuscocapillus

SPECIES lutescens

GENUS Eolagurus

SPECIES luteus

SPECIES przewalskii

GENUS Eothenomys

SPECIES cachinus

SPECIES chinensis

SPECIES custos

SPECIES melanogaster

SPECIES miletus

SPECIES olitor

SPECIES proditor


GENUS Hyperacrius

SPECIES fertilis

SPECIES wynnei

GENUS Lagurus

SPECIES lagurus

GENUS Lasiopodomys

SPECIES brandtii

SPECIES fuscus

SPECIES mandarinus

GENUS Lemmiscus

SPECIES curtatus

GENUS Lemmus

SPECIES amurensis

SPECIES lemmus

SPECIES portenkoi

SPECIES sibiricus

SPECIES trimucronatus

GENUS Microtus

SPECIES abbreviatus

SPECIES californicus

SPECIES chrotorrhinus

SPECIES guatemalensis

SPECIES longicaudus

SPECIES mexicanus

SPECIES miurus

SPECIES richardsoni

SPECIES umbrosus

SPECIES xanthognathus


SPECIES agrestis

SPECIES anatolicus

SPECIES arvalis

SPECIES cabrerae

SPECIES dogramacii

SPECIES guentheri

SPECIES ilaeus



SPECIES paradoxus

SPECIES qazvinensis

SPECIES schidlovskii

SPECIES socialis

SPECIES tatricus

SPECIES transcaspicus

SUBGENUS Terricola

SPECIES bavaricus

SPECIES brachycercus

SPECIES daghestanicus

SPECIES duodecimcostatus

SPECIES felteni

SPECIES gerbei

SPECIES liechtensteini

SPECIES lusitanicus

SPECIES majori

SPECIES multiplex


SPECIES schelkovnikovi

SPECIES subterraneus

SPECIES thomasi


SPECIES breweri

SPECIES canicaudus

SPECIES montanus

SPECIES oregoni

SPECIES pennsylvanicus

SPECIES townsendii

SUBGENUS Alexandromys

SPECIES clarkei

SPECIES evoronensis

SPECIES fortis

SPECIES kikuchii

SPECIES limnophilus

SPECIES maximowiczii

SPECIES middendorffii

SPECIES mongolicus

SPECIES montebelli

SPECIES mujanensis

SPECIES oeconomus

SPECIES sachalinensis

SUBGENUS Stenocranius

SPECIES gregalis


SPECIES oaxacensis

SPECIES pinetorum

SPECIES quasiater


SPECIES ochrogaster

GENUS Myodes

SPECIES andersoni

SPECIES californicus

SPECIES centralis

SPECIES gapperi

SPECIES glareolus

SPECIES imaizumii

SPECIES regulus


SPECIES rufocanus

SPECIES rutilus

SPECIES shanseius

SPECIES smithii

GENUS Myopus

SPECIES schisticolor

GENUS Neodon

SPECIES forresti


SPECIES juldaschi

SPECIES sikimensis

GENUS Neofiber

SPECIES alleni

GENUS Ondatra

SPECIES zibethicus

GENUS Phaiomys

SPECIES leucurus

GENUS Phenacomys

SPECIES intermedius

SPECIES ungava

GENUS Proedromys

SPECIES bedfordi

GENUS Prometheomys

SPECIES schaposchnikowi

GENUS Synaptomys

SUBGENUS Synaptomys

SPECIES cooperi


SPECIES borealis

GENUS Volemys

SPECIES millicens

SPECIES musseri


    Alticoli Gromov, 1977
    Arvicolidae Gray, 1821
    Arvicolina Bonaparte, 1837
    Arvicolini Giebe, 1855
    Arvicolinae Baird, 1857
    Arvicolae Winge, 1887
    Arvicolini Kretzoi, 1955
    Braminae Miller and Gidley, 1918
    Clethrionomyini Hooper and Hart, 1962
    Clethrionomyi Gromov, 1977
    Clethriomyina Pavlinov and Rossolimo, 1987
    Dicrostonychini Kretzoi, 1955
    Dicrostonyxini Gromov, 1972
    Dicrostonychinae Chaline, 1973
    Dicrostonychina Pavlinov and Rossolimo, 1987
    Dolomyinae Chaline, 1975
    Ellobiusini Gill, 1872
    Ellobiinae Gill, 1872
    Ellobii Weber, 1928
    Ellobiini Simpson, 1945
    Fibrini Mehely, 1914
    Lagurini Kretzoi, 1955
    Lagurina Pavlinov and Rossolimo, 1987
    Lemnina Gray, 1825
    Lemmi Miller, 1896
    Lemmini Simpson, 1945
    Lemminae Kretzoi, 1955
    Microtidae Cope, 1891
    Microtinae Miller, 1896
    Microti Miller, 1896
    Microtini Simpson, 1945
    Myodini Kretzoi, 1969
    Neofibrini Hooper and Hart, 1962
    Ondatrini Gray, 1825
    Ondatrini Kretzoi, 1955
    Ondatrinae Repenning, 1982
    Ondatrina Pavlinov et al., 1995
    Phenacomyini Zagorodnyuk, 1990
    Pitymyini Repenning, 1983
    Pliomyini Kretzoi, 1969
    Pliomyini Chaline, 1975
    Pliomyi Gromov, 1977
    Pliophenacomyini Repenning, Fejfar, and Heinrich, 1990
    Prometheomyinae Kretzoi, 1955
    Prometheomyini Hooper and Hart, 1962
    Prometheomyina Pavlinov et al., 1995
    Synaptomyini Koenigswald and L. D. Martin, 1984

  Bucknell Home Page   Biology Department Home Page


©Bucknell Univesity All Rights Reserved
Comments and questions to