
Introduction 
 

This chapter on phase equilibrium has three major objectives.  First, vapor-liquid equilibrium, 
environmental equilibrium, and solubility are examined using the first principle of the distribution 
coefficient discussed in Chapter 2.  You should review this material in Chapter 2 before continuing to read 
here.  Second, several key concepts are described in the form of graphic organizers.  Third, example phase 
equilibrium problems are provided, whose solutions were generated using the problem solving strategy 
described in Chapter 4.  Most of these examples are worked-out problems found in various editions of the 
Felder and Rousseau textbook [2005] entitled “Elementary Principles of Chemical Processes.”  Once you 
understand the solution to an example in this CinChE chapter, you should compare it to its counterpart in 
the appropriate edition of the Felder and Rousseau textbook (including the 4th Ed.) and analyze the 
differences.  The information on vapor-liquid equilibrium, environmental equilibrium, and solubility, as 
well as the graphic organizers, will help you to understand the example problems. 
 
Vapor-Liquid Equilibrium 
 

Based on the presentation in Chapter 2, the criteria for phase equilibrium are that the temperature in 
all phases is the same, the pressure in all phases is the same, and the fugacity for each chemical component 
in all phases is the same.  When the fugacity of each component in each phase is the same, the composition 
in each phase has its own set of fixed values.  For example, consider the following isolated system for 
vapor-liquid equilibrium: 
 

 
Saturated Vapor Phase 

 

TV  and  PV  and  ˆ 'V
jf s  

Saturated Liquid Phase 
 

TL  and  PL  and  ˆ 'L
jf s  

ncyyyy ,,,, 321   

ncxxxx ,,,, 321   

 
 

where “nc” is the number of chemical components in the system, and the temperature, pressure, and 
composition of each phase are measurable properties.  An isolated system is a hypothetical construct that 
has neither material nor energy crossing the system boundary.  Each of the chemical components (j-th = 1, 
2, 3, …, nc) is distributed in both phases and no chemical reactions are occurring.  The vapor mole 
fractions ( ncyyyy ,,,, 321  ) have fixed values, while the liquid mole fractions ( ncxxxx ,,,, 321  ) have 
fixed but different values.  If the temperature or pressure in the above diagram were to increase (or 
decrease) slightly, the compositions in the vapor and liquid phases would adjust to a new state of 
equilibrium, so that the fugacity of each j-th component ( ˆ

jf ) becomes the same in both phases.  In this 
hypothetical system, its boundary is flexible and, thus, allows for expansion or contraction of its volume, in 
order to account for changes in temperature or pressure. 
 
 As was defined in Chapter 2, the first principle for phase equilibrium is called the distribution 
coefficient, or sometimes it is also known as the partitioning coefficient or the equilibrium vaporization 
ratio.  This first principle is expressed as follows for the j-th component in the equilibrium system: 
 

aseanother phnent j in n of compocompositio
one phasenent j in n of compocompositioK j =  
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where  Kj  is the dimensionless distribution coefficient for the j-th chemical component, and the two 
composition quantities can be expressed as either the mass fraction, mole fraction, or concentration of 
component j in each phase.  The concentration is either mass or moles of j per volume of the phase or per 
amount of the solvent in that phase.  In general, this relationship for the distribution coefficient can be 
written for each chemical component in the equilibrium system.  The distribution coefficient for each j-th 
chemical component (Kj) is a function of the temperature, pressure, and compositions of the equilibrium 
system.  For example, as temperature increases, its value will increase.  Conversely, as temperature 
decreases, its value will decrease.   
 

For multicomponent systems, the following rigorous thermodynamic criteria apply for vapor-
liquid equilibrium (VLE), where no simplifying assumptions are made about the isolated system: 
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In the “VLE Criteria” column, the fourth equation is another way to write the chemical equilibrium of the 
fugacities ( ˆ

jf ) in terms of fugacity coefficients ( ˆ
jφ ).  Note that ˆ ˆV V

j j jf y Pφ=  and  ˆ ˆL L
j j jf x Pφ= .  The 

“Rigorous VLE Model” column defines the equilibrium distribution coefficient for each j-th component 
(Kj) in terms of the vapor and liquid mole fractions ( j jy and x ).  The second equation for Kj represents 
how to calculate its value.  This equation is obtained by rearranging the fourth equation in the “VLE 
Criteria” column.  Finally, the fugacity coefficient of the j-th component in each phase is a function of the 
temperature, pressure, and mole fractions ( y or x ) of that phase.  In the above Rigorous VLE Model, the 
four equations are to be written for each chemical compound that distributes itself into both the vapor and 
liquid phases.  For a four-component system, we would thus write sixteen equations, four for each of the 
four chemical components. 
 

Fugacity ( ˆ
jf ) can be thought of as a “corrected pressure” that accounts for the attractive and 

repulsive forces between molecules within a phase.  It is an abstract concept that defines the tendency for a 
chemical compound to escape from a specific phase.  It has units of pressure, and it is not a measurable 
property.  However, it can be related using thermodynamics to the temperature, pressure, and composition 
of a phase through the fugacity coefficient using function phiV or phiL in the above rigorous VLE model.  
Note that a fugacity coefficient function can be represented by a graph, table, equations, or computer 
software tool like the Aspen HYSYS® simulator or ThermoSolver.   
 

The fugacity coefficient ( ˆ
jφ ) is a dimensionless quantity that describes the relative balance 

between attractive and repulsive forces for molecules within a phase.  A fugacity coefficient of one means 
the two forces are in balance. A value less than one means attractive forces between molecules dominate, 
and the molecules want to stay more in the liquid phase.  A value greater than one means repulsive forces 
between molecules dominate, and the molecules want to stay more in the vapor phase.  For the case of an 
ideal gas, a gas molecule has no effect on its neighboring molecules because no attractive and repulsive 
forces exist.  For the case of an ideal liquid solution, a liquid molecule sees its neighboring molecules being 
similar to it and thus the attractive and repulsive forces are in balance. 
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How are the functions phiV and phiL modeled?  The fugacity coefficient of the j-th component in 
the saturated vapor phase is represented using an equation of state like Soave-Redlich-Kwong (SRK), 
Peng-Robinson (PR), or Peng-Robinson Stryjek-Vera (PRSV).  The ˆV

jφ equation based on the PR equation 
is shown in Chapter 3 of this CinChE manual (p. 3-25).  If the saturated vapor phase behaves like an ideal 
gas, then ˆV

jφ = 1.  Two methods exist to represent the fugacity coefficient of the j-th component in the 
saturated liquid phase.  First, a cubic equation of state can be used if it can predict both the vapor and liquid 
phases like SRK, PR, and PRSV.  To account for the mixture of chemical compounds, mixing rules are 
used to predict the coefficients in an equation of state.  Example mixing rules are shown for the Peng-
Robinson equation in Chapter 3.  Second, a liquid activity coefficient model such as Wilson, NRTL, and 
UNIQUAC can be used to predict the non-ideal behavior of the liquid phase.  These types of models have 
binary interaction parameters that must be fitted to experimental data.  For this method, ˆ /L

j j jf Pφ γ=  , 

where jγ is the activity coefficient and jf  is the standard state fugacity for the pure chemical compound j.  

The activity coefficient models are beyond the scope of this introductory course, but you will have 
an opportunity to examine them in a later course on chemical engineering thermodynamics.  Note that these 
models tend to be more reliable than the equation-of-state method, because they are based on experimental 
data.  For this introductory course, our focus will be to use simplified models for ˆV

jφ and ˆL
jφ , or to use 

equations of state for both of them.  For the latter, we use computer software like Aspen HYSYS® and 
ThermoSolver to do the complex calculations associated with an equation of state.   
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Rigorous VLE Mathematical Model 
 

Multicomponent Vapor-Liquid Equilibrium TXY Diagram for a Binary Mixture 
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1 2, , , ncx is vector elements x x x  
1 2, , , ncy is vector elements y y y  
1 2, , , ncz is vector elements z z z  

1 2, , , ncK is vector elements K K K  
 
Degrees-of-Freedom Analysis: 
 
 # vars  = 6·nc + 4 
 # eqns  = 5·nc + 2 
 dof   = 1·nc + 2 

 
Gibbs Phase Rule Model 
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 # vars  = 5·nc + 2 
 # eqns  = 4·nc + 2 
 dof   = 1·nc 
  

Gibbs Phase Rule:    dof  =  2  +  nc  -  π 

The Gibbs model is a partial subset of the VLE model, and 
it represents the solid red line from Points L to V in the 
above TXY diagram.  The VLE model depicts not only the 
solid red line but also the vertical dotted blue line from 
Points “b” to “c” in its TXY diagram above.  
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hanyak
Note
Within the imaginary boundary (dotted red rectangle) for an isolated system, equilibrium means the temperatures in both phases are equal, the pressures in both phases are equal, and the fugacities of each component j in both phases are the same.

An isolated system means NO material and NO energy cross the system boundary, but the boundary is flexible allowing for expansion and contraction; that is, the volume of the system can increase or decrease as temperature or pressure changes.

hanyak
Note
*  Total Balance:
           nT  =  nV  +  nL

            1  =  nV / nT  +  nL / nT
            1  =     Vf     +     Lf 

*  Component j Balance:

     nT * Zj  =  nV * Yj  +  nL * Xj

           Zj  =  Vf * Yj  +  Lf * Xj

*  Two Definitions:
          Vf  is  the molar vapor fraction
          Lf  is  the molar liquid fraction


hanyak
Note
*  Significances of Zj in j-th balance:
           Zj  =   Vf * Yj  +   Lf * Xj
*  Let's assume the following values,
   where "C1" is the first component:
          nV  =  100  moles
          nL   =  300  moles
      nV,C1  =    40  moles
      nL,C1  =   180  moles

         YC1  =    40 / 100  = 0.4
         XC1   =  180 / 300  = 0.6
         ZC1   =  (40+180) / (100 + 300)
                 =   0.55
           Vf   =  100 / (100 + 300)
                 =  0.25
          ZC1  =  0.25*0.4  +  0.75*0.6
                 =  0.55


hanyak
Sticky Note
See the HYSYS manual, Pages C-6 to C-8, for a detailed explanation of the temperature-composition (or TXY) diagram, or consult your course textbook for an explanation.

hanyak
Note
Pictorially, the VLE mathematical model represents each red horizontal line in the TXY diagram that can be drawn from the saturated liquid curve to the saturated vapor curve, and that red line must cross or touch the blue vertical line somewhere from the dew-point temperature to the bubble-point temperature; that is, from a vapor fraction of one to zero for a given pressure P and any total composition (Zj’s) on the x-axis from zero to one.

hanyak
Sticky Note
The "dof = 2 + nc - π" as given by the Gibbs Phase Rule model does not match the "dof = 1∙nc + 2" as given by the VLE mathematical model.

Why do they differ?  By examining the two models, we can see that the Gibbs model does NOT include the total and component material balances. 

In a binary system, the Gibbs dof = 2, while the VLE dof = 4.  Some choices of known variables for the Gibbs model are T and P, P and x1, and P and y1.  For the VLE model, some choices of known variables are T, P, z1, z2; P, Vf, z1, z2; and T, Vf, z1, z2.  Note that the total composition (z1, z2) is not part of the Gibbs model.

hanyak
Rectangle

hanyak
Sticky Note
This math model is rigorous for all states of vapor-liquid equilibrium (VLE), meaning it is written without making any assumptions, other than the hypothetical construct of an isolated system.  

This VLE math model becomes non-rigorous, once you decided on how to represent the "phiL" and "phiV" functions, because assumptions must be made to represent those functions.

For example, the saturated vapor is assumed to behave as an ideal gas and the saturated liquid is assumed to be a non-ideal solution.  Thus, the VLE math model is applicable only for pressures less than or equal to 3 atm.  It can not represent all states of vapor-liquid equilibrium, but only a limited set of states. 
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Rigorous Mathematical Algorithm VLET 
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The “Development of a Mathematical Algorithm” 
in Chapter 4 (pp. 4-15 to 4-20) presents the 
procedure to generate an ITERATE construct 
from a NSOLVE construct. 
 
Algorithm VLET has an outer iteration loop on 
temperature (T, a scalar quantity) and an inner 
iteration loop on the distribution coefficients ( ,K  
a vector quantity).   
 
An initial estimate for T can be found with: 
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The tsat function is the Antoine equation. 
 

An initial estimate for K can be found with:  
* * [ , ]j j jK where psat T pure jP P P= =  

The psat function is the Antoine equation. 

 
 
Rigorous Mathematical Algorithm VLEVF 
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The “Development of a Mathematical 
Algorithm” in Chapter 4 (pp. 4-15 to 4-20) 
presents the procedure to generate an 
ITERATE construct from a NSOLVE 
construct. 
 
Algorithm VLEVF has an outer iteration loop 
on vapor fraction (Vf, a scalar quantity) and an 
inner iteration loop on the distribution 
coefficients ( ,K  a vector quantity).   
 
An initial estimate for Vf is bounded by 

0 1fV≤ ≤  
Start with a value of 0.5. 
 

An initial estimate for K can be found with:  
* * [ , ]j j jK where psat T pure jP P P= =  

The psat function is the Antoine equation 
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hanyak
Note
Because this rigorous VLET algorithm involves complex and tedious iterations, a computer software tool like Aspen HYSYS or ThermoSolver will be used to solve it in this introductory course.

The "phiV" function is usually represented by a cubic equation of state like SRK, PR, or PRSV.  The "phiL" function is usually represented by an activity coefficient model like the Wilson, NRTL, or UNIQUAC method.  An alternate model for the "phiL" function is a cubic equation of state.
 
In this introductory course, we will ONLY use an equation of state for both "phiV" and "phiL" as our rigorous model.  You will encounter the activity coefficient models in a later course on chemical engineering thermodynamics.

hanyak
Note
Because this rigorous VLEVF algorithm involves complex and tedious iterations, a computer software tool like Aspen HYSYS or ThermoSolver will be used to solve it in this introductory course.

The "phiV" function is usually represented by a cubic equation of state like SRK, PR, or PRSV.  The "phiL" function is usually represented by an activity coefficient model like the Wilson, NRTL, or UNIQUAC method.  An alternate model for the "phiL" function is a cubic equation of state.
 
In this introductory course, we will ONLY use an equation of state for both "phiV" and "phiL" as our rigorous model.  You will encounter the activity coefficient models in a later course on chemical engineering thermodynamics.
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Rigorous Mathematical Algorithm VLEP 
 

( ) 1, 2, ...,

1, 2, ...,

1, 2, ...,

1, 2, ...,

1, 2, ...,

[ , , ] [ , , ]

1. 1.0

2. ITERATE in
ITERATE in

/

ˆ [ , , ]
ˆ [ , , ]

ˆ ˆ/

f

f f

j j f j f

j j j

L
j

V
j

L V
j j j

for j nc

for j nc

for j nc

for j nc

for j nc

P x y vlet T V z

L V

P
K

x z V K L

y K x

phiL T P x

phiV T P y

K

UNTIL K

φ

φ

φ φ

=

=

=

=

=

=

← −

← +

←

←

←

′ ←

=

1 1

( )

( ) 0

nc nc

j j
j j

K

f P x y

UNTIL f P
= =

′

= −

=

∑ ∑

 

 
The “Development of a Mathematical Algorithm” 
in Chapter 4 (pp. 4-15 to 4-20) presents the 
procedure to generate an ITERATE construct 
from a NSOLVE construct. 
 
Algorithm VLEP has an outer iteration loop on 
pressure (P, a scalar quantity) and an inner 
iteration loop on the distribution coefficients  
( ,K  a vector quantity).   
 
An initial estimate for P can be found with: 
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The psat function is the Antoine equation. 
 

An initial estimate for K can be found with:  
* * [ , ]j j jK where psat T pure jP P P= =  

The psat function is the Antoine equation 

 
 
The above rigorous mathematical model for vapor-liquid equilibrium of a multicomponent system has 
three mathematical algorithms as given above and summarized below.   
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Because the above mathematical algorithms use fugacity coefficient functions (phiV and phiL) that are 
rigorously represented by equations of state and activity coefficient models, a software tool like the Aspen 
HYSYS® simulator and ThermoSolver are needed to automate their solution.  Manually solving the 
rigorous versions of these algorithms is a complex and often error prone task, and it is rarely done. 
 
The three functional equations highlighted above for vlet, vlevf, and vlep are the first principles that 
we will write in the mathematical models of problems that involve vapor-liquid equilibrium.  
However, we will assume that Raoult’s law is applicable for all chemical components in most equilibrium 
problems.  This assumption simplifies the three rigorous mathematical algorithms by eliminating the inner 
iteration loop on the distribution coefficients.  The Kj’s are not dependent upon the vapor and liquid mole 
fractions under Raoult’s law, as they are for the rigorous mathematical algorithms above. 
 
The mathematical model and its three mathematical algorithms for multicomponent vapor-liquid 
equilibrium (VLE) based on Raoult’s law are presented on the next three pages.  Whenever you need to 
solve one of these mathematical algorithms, you would process the VLE mathematical model with “EZ 
Setup” for a binary system and have the Excel Solver tool do the iterative calculations.  Alternately, you 
will use Aspen HYSYS® or ThermoSolver for system with greater than two chemical components.  You 
will need to provide the Excel “EZ Setup”/Solver, HYSYS, or ThermoSolver printouts as part of your 
solution documentation. 
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hanyak
Note
Because this rigorous VLEP algorithm involves complex and tedious iterations, a computer software tool like Aspen HYSYS or ThermoSolver will be used to solve it in this introductory course.

The "phiV" function is usually represented by a cubic equation of state like SRK, PR, or PRSV.  The "phiL" function is usually represented by an activity coefficient model like the Wilson, NRTL, or UNIQUAC method.  An alternate model for the "phiL" function is a cubic equation of state.
 
In this introductory course, we will ONLY use an equation of state for both "phiV" and "phiL" as our rigorous model.  You will encounter the activity coefficient models in a later course on chemical engineering thermodynamics.

hanyak
Note
When solving a problem, you will write, as the first principle for vapor-liquid equilibrium, one or more of these functional equations in the problem's mathematical model.

How do you decide that a problem solution requires the concept of vapor-liquid equilibrium?  In the problem statement, you look for a key word like saturated, bubble-point, dew-point, vapor or liquid fraction, equilibrium, etc.

hanyak
Note
Modeling the above rigorous functions for "vlet", "vlevf", and "vlep" will be based on what you write under the list of assumptions for the problem; for example, the Peng-Robinson Stryjek-Vera (PRSV) or Peng-Robinson (PR) equation of state for the saturated vapor and liquid phases.
 
You would solve the rigorous VLE algorithms using Aspen HYSYS for PRSV or ThermoSolver for PR.  You could also use Aspen HYSYS for PR.

hanyak
Note
The VLE mathematical model based on Raoult's Law is obtained by simplifying the rigorous VLE mathematical model found on Page 6-12.

Under Raoult's Law for the whole range of mole fractions (0 to 1), the saturated vapor behaves as an ideal gas and the saturated liquid behaves as an ideal liquid solution.

Thus, the vapor fugacity coefficient of each j-th component is equal to one, and the liquid fugacity coefficient of each j-th component is equal to P*j/P, where the vapor pressure (P*j) is given by the Antonie equation for component j.
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