

Reputits Law Model
Multicomponent VLEPage 3 of 6Find VLE PressureClick here to view into on the
"EZ Setup" function for Viep".
$$[P, \bar{x}, \bar{y}] = vlep [T_j, y_j, \bar{z}]$$
for $o \in V_j \in I.o$ 1. $L_j \notin 1.o - V_j$ for $j = l_j z_j \dots, nc$ 2. $P_j^* \leftarrow p sat [T_j pure j]$ for $j = l_j z_j \dots, nc$ 3. Iterate on P in $K_j \notin P_j^* / P$ $X_j \notin P_j^* / P$ $X_j \leftarrow X_j = Z_j$ $Y_j \leftarrow K_j X_j$ Fix T $y_i \leftarrow K_j X_j$ $Fix T$ $y_i \leftarrow K_j X_j$ $Fix T_j V_j = 0, \bar{z}$ $i = 1, 2, \cdots, nc$ $K_j \leftarrow K_j X_j$ $i = 1, 2, \cdots, nc$ $K_j \leftarrow K_j X_j$ $i = 1, 2, \cdots, nc$ $K_j \leftarrow K_j X_j$ $i = 1, 2, \cdots, nc$ $K_j \leftarrow K_j X_j$ $i = 1, 2, \cdots, nc$ $K_j \leftarrow K_j X_j$ $i = 1, 2, \cdots, nc$ $K_j \leftarrow K_j X_j$ $i = 1, 2, \cdots, nc$ $K_j \leftarrow K_j \times K_j$ $i = 1, 2, \cdots, nc$ $K_j \leftarrow K_j \times K_j$ $i = 1, 2, \cdots, nc$ $K_j \leftarrow K_j \times K_j$ $i = 1, 2, \cdots, nc$ $K_j \leftarrow K_j \times K_j$ $i = 1, 2, \cdots, nc$ |

Example Binary System for Vapor-Liquid Equilibrium

Page 5 of 6

Click here to view this Excel "EZ Setup"/Solver formulation as Worksheet "Raoult".

What would the equilibrium results for this pentane/hexane example look like if an equation of state was used to model the K-values instead of Raoult's Law? As an enhancement exercise, <u>click here</u> and do the equilibrium calculations for this example using the Peng-Robinson equation.

Alternate "EZ Setup" Solution for Example Binary System

Page 6 of 6

<u>Click here</u> to view this Excel "EZ Setup"/Solver formulation as Worksheet "fT-model".

/* Raoult's Law applied to n-Pentane and n-Hexane System */						
// Total and Two Component Material Balances 1.0 = Vf + Lf	This Excel "EZ Setup"/Solver formulation simulates the ITERATE loop for the scalar unknown of temperature found in the					
zPT = Vf * yPT + Lf * xPT zHX = Vf * yHX + Lf * xHX	multicomponent " vlet " math algorithm given on "Page 2 of 6" above, but for a binary system.					
// Vapor-Liquid Equilibrium using Raoult's Law yPT = kPT * xPT yHX = kHX * xHX	The iteration variable T and the iteration function fT are written into the "EZ Setup " math model as shown by the two aqua-highlighted lines below.					
kPT = PsatPT / P kHX = PsatHX / P	This technique of simulating an ITERATE loop can be used as a fallback whenever the "EZ Setup"/ Solver has difficulty solving the math model.					
<pre>// Antoine Equations for the Two Components, F&R, 3rd Ed., Table B.4 log(PsatPT) = 6.84471 - 1060.793 / (T + 231.541)</pre>						
// Two mixture equations for the liquid and vapor phases fT = xPT + xHX - yPT - yHX						
T = 40 The si Excel	mulation of an ITERATE loop is done by using the Solver and SolverTable Add-Ins. A case study on					
// Given Informationtemper $Vf = 0.6$ partial $P = 760$ fT is c $zPT = 0.40$ be dor $zHX = 1.0 - zPT$ temper	temperature from 50 to 70° C was done, and the table of partial results is shown below. In this table, the function fT is close to zero near 57° C. Another case study could be done from 56 to 57° C to get the equilibrium temperature of 56.88° C for a vapor fraction of 0.60.					

_		Σ	\geq	Excel Sol	verTable f(T) versus T Plot	
т	fT	kHX	kPT	хРТ	уРТ	The simulation of an ITERATE loop is depicted	
50	0.218885	0.533297	1.570680	0.297973	0.468018	below by plotting f(T) versus T. The desired root is	
51	0.186165	0.552683	1.619650	0.291590	0.472274	where the curve crosses the x-axis	
52	0.153740	0.572625	1.669800	0.285332	0.476446		
53	0.121622	0.593136	1.721120	0.279198	0.480534	Function f(T) versus Temperature	
54	0.089823	0.614227	1.773650	0.273189	0.484541		
55	0.058353	0.635908	1.827400	0.267301	0.488466	0.8	
56	0.027221	0.658192	1.882380	0.261535	0.492310		
57	-0.003562	0.681091	1.938620	0.255890	0.496074	0.48	
58	-0.033989	0.704616	1.996140	0.250363	0.499758	E root	
59	-0.064051	0.728779	2.054950	0.244953	0.503365	0.16	
60	-0.093741	0.753592	2.115070	0.239659	0.506894	0	
61	-0.123052	0.779068	2.176520	0.234479	0.510347	-0.16	
62	-0.151979	0.805218	2.239310	0.229412	0.513725		
63	-0.180515	0.832055	2.303480	0.224456	0.517029	-0.48	
64	-0.208656	0.859592	2.369030	0.219609	0.520261	0 16 32 48 64 80	
65	-0.236398	0.887840	2.435980	0.214870	0.523420	Temperature	
66	-0.263737	0.916813	2.504360	0.210237	0.526509	To loop some shout date a manual transition of	
67	-0.290671	0.946522	2.574180	0.205708	0.529528	To learn more about doing a manual iteration on a	
68	-0.317195	0.976982	2.645460	0.201280	0.532480	Algorithm" in the <i>CinChE</i> manual Chapter 4	
69	-0.343309	1.008200	2.718220	0.196954	0.535364	specifically Pages 4-16 to 4-17.	
70	-0.369011	1.040200	2.792480	0.192726	0.538183		