Ideal Gas Mixture

Amagat’s Law

The volume of an ideal gas mixture \((V) \) is equal to the sum of the component volumes \((V_j) \)'s of each individual component in the gas mixture at the same temperature \((T) \) and total pressure \((P) \) of the mixture. For example,

\[
P V_A = n_A R T \quad P V_B = n_B R T \quad PV = n R T
\]

\[
\frac{V_A}{n_A} = \frac{V_B}{n_B} = \frac{V}{n} \quad \text{thus} \quad \frac{n_A}{n} = \frac{V_A}{V} = y_A \quad \text{and} \quad \frac{n_B}{n} = \frac{V_B}{V} = y_B
\]

Dalton’s Law

The total pressure \((P) \) of an ideal gas mixture is equal to the sum of the partial pressures \((p_j) \)'s of each individual component in the gas mixture at the same temperature \((T) \) and total volume \((V) \) of the mixture. For example,

\[
p_A V = n_A R T \quad p_B V = n_B R T \quad PV = n R T
\]

\[
\frac{p_A}{n_A} = \frac{p_B}{n_B} = \frac{p}{n} \quad \text{thus} \quad \frac{n_A}{n} = \frac{p_A}{p} = y_A \quad \text{and} \quad \frac{n_B}{n} = \frac{p_B}{p} = y_B
\]

Ideal Gas Mixture

\[
x_j = \frac{n_j}{n} = \frac{V_j}{V} = \frac{p_j}{p} = y_j \quad \text{for each component } j
\]

Thus, mole fraction \((x_j) \) and volume fraction \((y_j) \) for an ideal gas mixture are equivalent.

To illustrate the above concepts, the next page presents the “EZ Setup” model for an ideal gas mixture of 21 mol\% O\(_2\) and 79 mol\% N\(_2\) at 25°C and 1 atm.

Note that a gas mixture will behave like an ideal gas when \(P \leq \) about 3 atm.
Ideal Gas Mixture

click here to download this model and solve it using the "EZ Setup"/Solver Add-Ins.

"EZ Setup" Mathematical Model

// Amagat's Law and Dalton's Law for Ideal Gas Mixture
// 21 mol% O2 and 79 mol% N2 at 25°C and 1 atm

// Given Information:
R = 0.08205746 // L atm/mol K
T = 25 + 273.15 // K
P = 1 // atm
n = 1 // moles of mixture

n_O2 = 0.21 * n // moles of oxygen
n_N2 = 0.79 * n // moles of nitrogen

// Amagat's Law:
/* mixture */ P * V = n * R * T
/* oxygen */ P * V_O2 = n_O2 * R * T
/* nitrogen */ P * V_N2 = n_N2 * R * T
/* total volume */ V_total = V_O2 + V_N2
/* volume fraction O2 */ y_O2 = V_O2 / V_total
/* volume fraction N2 */ y_N2 = V_N2 / V_total

// Dalton's Law:
/* partial pressure O2 */ p_O2 * V = n_O2 * R * T
/* partial pressure N2 */ p_N2 * V = n_N2 * R * T
/* total pressure */ P_total = p_O2 + p_N2
/* mole fraction O2 */ x_O2 = p_O2 / P_total
/* mole fraction N2 */ x_N2 = p_N2 / P_total

Calculated Results

<table>
<thead>
<tr>
<th>V</th>
<th>24.4654 liters</th>
<th>p_N2</th>
<th>0.79 atm</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_N2</td>
<td>19.3277 liters</td>
<td>p_O2</td>
<td>0.21 atm</td>
</tr>
<tr>
<td>V_O2</td>
<td>5.13774 liters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_total</td>
<td>24.4654 liters</td>
<td>P_total</td>
<td>1 atm</td>
</tr>
<tr>
<td>y_N2</td>
<td>0.79 vol frac</td>
<td>x_N2</td>
<td>0.79 mol frac</td>
</tr>
<tr>
<td>y_O2</td>
<td>0.21 vol frac</td>
<td>x_O2</td>
<td>0.21 mol frac</td>
</tr>
</tbody>
</table>